ALGEBRA II QR GUIDE

BAILEE ZACOVIC

These notes provide an overview of Galois theory and other relevant content for the

University of Michigan’s Algebra II Qualifying Review Examination. For further read-

ing, see Abstract Algebra by Dummit and Foote, Algebra by Hungerford, Algebra by Lang,

Abstract Algebra: The Basic Graduate Year by Ash, Commutative Algebra by Zariski and

Samuel, Lectures in Abstract Algebra, Vol. 11l by Jacobson, and Basic Algebra by Jacobson.
1. SuBGrOUPS AND QUOTIENTS

Let G be a group, and denote e € G the identity element.

Definition 1.1. A subgroup H < G is a subset of G which is nonempty and closed under
products and inverses.

Definition 1.2. A subgroup H of G is normal, denoted H < G is a self-conjugate group,
that is, it satisfies any of the following equivalent conditions:

e gNg! C Nforallg €@,

e gN = Ngforall g € G,

e [N,G] C N.

Normality is a feature which, in particular, ensures the natural (left) coset multiplica-
tion: gN-hN = (gh)N. For this reason, we only consider quotients by normal subgroups.

Fact 1.3. All index-2 subgroups are normal.
Conjugacy classes provide another useful characterization of normal subgroups.

Definition 1.4. Elements g, h € G are conjugate whenever there exists an element f € G
such that g = fhf~L.

Example 1.5. In A;, there are five conjugacy classes, with representatives given by:

e, (12345), (21345), (12)(34), (123).
On can verify that the orders of these classes are given by 1, 12,12, 15, and 20 respectively.

Lemma 1.6. A subgroup H < G is normal if and only if it is the union of conjugacy classes in
G.

Definition 1.7. A simple group G is such that N < G implies N = {e} or N = G.

Example 1.8. The alternating group A, is simple for n > 5. (A; is also simple.)
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Simplicity of A,, n > 5, allows us to deduce the following additional fact, which we
include here for completion.

Lemma 1.9. For n > 5, A, is the unique index-2 subgroup of .S,,.

Proof. Let H < S, be another index-2 subgroup. It is therefore normal in S,. Then
HnNA; 9 As, so it follows that H N A; = {e} by A; simple. Considering the sign
homomorphism sign : S, — Z/27Z, we realize that H*> C H N A5 = {e} since sign(h?) =0
for all h € H. This forces H = {e}, a contradiction. O

Definition 1.10. Let N < G. The quotient group denoted G/N is given by the set of all
left cosets of N in G, i.e., G/N = {gN : g € G}.

Theorem 1.11. (Second Isomorphism Theorem) For S < G and N < G, SN/N = S/NN S,
where SN denotes the subgroup generated by the union of elements S U N.

The structure of a group G is unveiled in part by its subgroups. Characterizing sub-
groups is therefore a central project of group theory.

Theorem 1.12. (Langrange’s Theorem) If G is finite and H < G, then |H|||G|.

Theorem 1.13. (Cauchy’s Theorem) If G is finite and p is a prime satisfying p||G|, then G
contains an element of order p.

Given some subset S C G, we define the following two subgroups associated to S:
Definition 1.14. The centralizer of S in G is C(S) = {g € G : gs = sg for all s € S}.
The center of a group G is denoted Z(G) = Cx(G).

Example 1.15. For Dy, = (r,s : r" = s* = ¢, srs =1r"1),
2(D,) - {e} when n ?s odd
{e,r"/?}  when n is even.

Example 1.16. The center Z(A,,) (and therefore Z(S,,)) is trivial for n > 4.
The center is particularly interesting when G has prime structure.
Theorem 1.17. (Burnside’s Theorem) If G is a p-group, Z(G) is nontrivial.

Proof. Let |G| = p" for p a prime. Consider the class equation of G,
p" =161 =12(G) + ) _[G: Calg)],
9i
where the g; are representatives of the disjoint conjugacy classes of GG, and [G : C¢(g;)]
divides p", hence [G : Z(G)] > [G : Cg(g;)] = p' > 1 for some 1 < i < n. If Z(G) is
trivial, then p divides the left-hand side but not the right, a contradiction. So Z(G) is
nontrivial. O

Lemma 1.18. G is abelian if and only if G/Z(G) is cyclic.
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Proof. If G is abelian, G/Z(G) is trivial. Conversely, if G/Z(G) is cyclic, let 0 € G be
a generator such that G/Z(G) consists of Z(G),0Z(G),...,0"Z(G). Then any ¢g,h € G
satisfy g = o's, h = o7t for s,t € Z(@G), such that

gh = (0"s)(c’t) = 0" st = (67t)(0's) = hg.

Definition 1.19. The normalizer of S in G is Ng(S) = {g € G : ¢S = Sg}.

Not all groups enjoy the property of being abelian. We can capture a group’s deviation
from being abelian in the commutator subgroup.

Definition 1.20. For G a group, the commutator subgroup is defined as |G, G] = {ghg *h ™" :
g,h € G}.

When G is abelian, [G, G| = {e}. It is an exercise to show [G, G| < G. We can always
consider an “abelianized” version of any group by taking the quotient by the commuta-
tor subgroup.

Definition 1.21. The abelianization of a group G is given by G, = G/[G, G].

The order of G, is given by the absolute value of its presentation matrix (see Exer-
cise 1.23). We define one final family of subgroups, which are invariant under group
automorphism.

Definition 1.22. We call H < G a characteristic subgroup of G if ®(H) = H for all & €
Aut(G).

Examples of characteristic subgroups include the center Z(G) of a group G, and the
commutator subgroup [G, G/.

1.1. Exercises.
Exercise 1.23. Let G be a group with the following presentation:
G = {a,b|(a®b)’ =1, a’ba"'b"?),
and let [G, G] be the commutator subgroup of G. Compute the order of G/[G, G].

Proof. The abelianization of the free group F = (a, b) is Z*. Denote a and b the generators.
Notice that
(a*h)° =1 = 10@ +5b = 0,
a’ba b =1 = a—b=0.
We obtain an isomorphism
Ga = (Za ® Zb)/(10a + 5b,a — b),
i.e. G4 has the presentation matrix
10 1
5 —1
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whose determinant in absolute value is 15. O

Exercise 1.24. (August 2020 Problem 2) Let G be the group of all invertible upper-
triangular 2 x 2 real matrices (with group law matrix multiplication). Let I/ be the subset
of G consisting of all elements of the form ¢* with g € G. Show that H is a subgroup,
and compute its index.

Proof. First, we aim to understand the elements of H. An element <g l;) of G satisfies

b \? b
@ b) _ Ve T where Ve €G <= a,c>0
0 ¢ 0 e 0 e

It is clear now that H < (G, where the coset representatives are given by

=1 0
0 =1
corresponding to the choice of sign on @ and c¢. This means [G : H] = 4. O

Exercise 1.25. (January 2021 Problem 1) Let G be a finite group and let ® : ¢ — G be
a group homomorphism. For n > 1, let ®" : G — G denote the n-fold composition
Po---0P.Set A=), Im(®") and B = J.-, Ker(®"). Show that B is normal in G, and
that G is the semi-direct product of A and B.

Proof. We have Ker(®) C Ker(®?) C --- C G, which means there exists N such that
Ker(®") = Ker(®"¥*!) = .... This means that B = Ker(®") < G. Moreover, G D
Im(®) O Im(®%) D ..., i.e. there exists M such that Im(®Y) = Im(®M*!) = .... Thus,
A = Im(®M). We may assume M = N. It remains to show that G = AB and ANB = {¢}.
Let g € AN B. Then there exists h € G such that ®(h) = ¢, and so ®?M(h) = e, i.e.
h € Ker(®*) = Ker(®"), which implies g = e. Next, fix g € G. We aim to show g = ab
for a € A and b € B. Since Im(®") = Im(®*M), there exists some h € G such that
PM(g) = ®*M(h). Denote a = ®M(h) € A. Then ®M(a"lg) = (P*M(h))"1dM(g) = ¢, ie.
a~'g € B, and the desired decomposition g = a(a"'g) follows. O

Exercise 1.26. (August 2021 Problem 2) Let p be an odd prime number. Form the semi-
direct product G = IF, x F, for the standard (scalar multiplication) action of I, on IF,,. Let
¢ be a prime. Calculate the cardinality of the set of all group homomorphisms from G to
Z/lZ in the following cases:

(1) ¢ is a prime number different from p,
2) £ =p.
Proof. We begin by recalling the fact that Hom(Z/mZ,Z /nZ) = Z/gcd(m, n)Z.
(1) When ¢ # p, we know first of all that Hom([F,, Z/¢Z) is trivial, i.e. any homomor-

phism from G to Z/{Z must factor through F7, which is cyclic of order p—1. From
this we deduce Hom(F;, Z/¢Z) = Z/gcd(p — 1, () Z.
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(2) When ¢ = p, it no longer happens that Hom(IF,,,Z/(Z) is trivial. On the other
hand, since Z/(Z is abelian, the kernel of an such homomorphism must include
|G, G]. Since ( is odd, any element in F,, x {e} is of the form (a,1) = (a,—1)-(0,—1),
i.e. any homomorphism must vanish on I, x {e}, and again factor through the
quotient F¥. Only this time, gcd(p — 1,p) = 1, hence Hom(F}, Z/{Z) is trivial.

U

Exercise 1.27. Let F' be a field. Prove or disprove: there is an action of F* on SL,(F)
such that GL,(F) = SL,(G) x F*.

Proof. This is true. We may embed F* into GL,(F') by mapping each a € F'* to the ma-
trix diag(c,1...,1). Notice that diag(c,1...,1) € SL,(F') if and only if « is the identity,
i.e. the image of F* in GL,(F'), isomorphic to F'*, intersects SL,,(F') only trivially. We
also recall that SL,,(F") 9 GL,,(F') by the determinant map a homomorphism. In fact, we
have the following short exact sequence via the determinant map:

e — SL,(F) —— GL,(F) -2 Fx e

Since the embedding above provides a map from F* to GL, (F)), this sequence is right
split exact and hence GL,,(F') = SL,,(F) x F*.
O

2. SYLow THEOREMS
Definition 2.1. A p-group is a group in which the order of every element in a power of p.

For fixed p, not all p-groups are isomorphic. For instance, Z/4Z 2 Z/2Z x Z/2Z. A
special feature of p-groups is that their centers are nontrivial.

Fact 2.2. Any group of order p? is abelian.

The Sylow theorems now provide further machinery to describe certain subgroups of
finite groups.
Theorem 2.3. (Sylow 1) Given G such that |G| = p® - m for p a prime and gcd(p, m) = 1, then
there exists a subgroup H < G with |H| = p°, called a “Sylow p-subgroup”.

Theorem 2.4. (Sylow 1I) Given a Sylow p-subgroup H < G, any other Sylow p-subgroup
H' < G is conjugate to H, i.e. H = gHg™* for some g € G.

In particular, when H < G is the unique Sylow p-subgroup, then H < G. This will be
useful in our future discussion of solvability.

Theorem 2.5. (Sylow III) The number of Sylow p-subgroups ne of G satisfies ng
(mod p).

I%andngzl

Importantly, the conjugation action of G on the set of Sylow p-subgroups induces a

homomorphism G — 5,,..
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Example 2.6. Let G be finite with |G| = 15 = 3 - 5. Then G admits unique Sylow 3-
and 5-subgroups, which are furthemore disjoint by ged(3,5) = 1. It follows that G is the
direct product of its Sylow p-subgroups.

Fact 2.7. For primes p < q, ¢ #1 (mod p),and |G| =p-q, G = Z/pZ x L/ qZ.
Definition 2.8. A finite group is nilpotent if it is the direct product of its Sylow subgroups.
Example 2.9. All abelian groups and p-groups are nilpotent.

2.1. Exercises.

Exercise 2.10. (May 2022 Problem 1) Let G be a simple group. Let # < G x G. Show that
H is isomorphic to the trivial group, G, or G x G.

Proof. Denote 7; the projection onto the ith factor. Consider H N (G x {e}) < G x G,
where it follows that X' = H N (G x {e}) is isomorphic to a normal subgroup of G via 7.
Similarly define L := my(H). We obtain the following short exact sequence:

e > K s H > L > e

The image of a normal subgroup under a surjective homomorphism is normal, hence
L < G. Since m(K), L = {e} or G, it follows from H/K = L that H = {e},G or G x G.
U

Exercise 2.11. (May 2022 Problem 2) Let p be a prime. Let G be a group such that |G|
is divisible by p but not p?. Show that G contains at most p — 1 conjugacy classes of
elements of order p.

Proof. By Cauchy’s theorem, we are guaranteed an element ¢ € G of order p, such
that (¢) < G is a Sylow p-subgroup. Any other element 7 of order p generates the
Sylow p-subgroup (7) which is conjugate to (o). In particular, 7 is conjugate to one of

o,0%, ..., 0P 7L OJ

Exercise 2.12. (May 2023 Problem 2) Let G be a finite group with |G| = 2 (mod 4). Let s
and ¢ be two nonidentity elements of G with s?> = ¢? = 1. Show that s and ¢ are conjugate
within G.

Proof. Any Sylow 2-subgroup of G has order 2, so (s) = {1, s} and (t) = {1,t} are both
Sylow 2-subgroups, which are therefore conjugate. Hence s = gtg~! for some g € G. O

Exercise 2.13. (January 2024 Problem 1) Let G be a finite simple group which contains
an element of order 55. Prove that the index of any proper subgroup of G is at least 16.

Proof. Fix a proper subgroup H < G, and denote n := [G : H|. Let 7 € G be of order
55. The action of G on the set of left cosets G/H defines a homomorphism p : G — S,,,
where ker(p) < G. Since G is simple and H is proper, ker(p) = {e}. From this it follows
that S,, contains an element ¢ = p(7) of order 55. The order of an element in S, is the

least common multiple of the lengths of the cycles in its cycle decomposition, hence o
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decomposes into disjoint cycles of lengths 5 and 11. This furnishes a lower bound on the
size of n,i.e. n > 5+ 11 = 16. O

Exercise 2.14. (January 2024 Problem 1) Prove that any group G of order 455 = 5-7 - 13
is abelian.

Proof. By the Sylow theorems, G contains exactly one or 91 Sylow 5-subgroups, exactly
one Sylow 7-subgroup, and exactly one Sylow 13-subgroup. Denote N; and N;3 the
(normal) Sylow 7- and 13-subgroups. Since N; N N3 = {e} homomorphism ¢ : G —
G/N7 x G /N3 is injective, and in fact each of G/N; and G/N;3 are abelian since G/N7 =
C5 x C13 and G/N;3 = C5 x Cy. Since subgroups of solvable groups remain solvable, and
the direct product of solvable groups is solvable, the result follows. The key idea here
was to break the factors 7 and 13 over two quotient groups. 0

Exercise 2.15. Let G be a finite group of order n. Let G act on itself by left multiplication,
and let ® : G — S,, be the homomorphism associated to this action. Show that im(G) C
A, if and only if (1) n is odd, or (2) n is even and the 2-Sylow subgroups of G are not
cyclic.

Proof. Let |G| = 2*m, for m odd. First, suppose n is even, i.e. k > 1, and that the 2-Sylows
are cyclic. We have at least one cyclic Sylow subgroup, then, of order 2", call it Cyx and
let b be a generator of this subgroup. Next, recall that the any cycle of even length in
the symmetric group has sign —1. Then the order of |®(b)||2" (where ®(b) generates a
cyclic subgroup in S,,), in particular it is even, hence the sign of ®(b) is odd, and so
im(®) € A,.

Conversely, if n is odd, then the order of every g € G is odd, hence the order of ®(g) is
odd, i.e. consists of a product of cycles of odd length. Since any odd cycle has sign +1, it
follows that ®(g) € A,,. Now let n be even, and suppose the 2-Sylows are not cyclic. Then
g € G has order 2%, b odd. It follows that ¢® has order 2 and is contained in a 2-Sylow

m

subgroup. Since the 2-Sylow subgroups are not cyclic, a < k. Then g acts on G by 2¥. 2
ok—a . m

cycles of length 2°b, and since 257 - 2 is even, the sign of ®(g) is (—1) b = +1.Inall
cases, im(®) C A,,. O

Exercise 2.16. (January 2022 Problem 1) Let p be a prime number. Let GG be a group of
order p* for k > 1 and let H be the subgroup of G generated by elements of the form g”.
Show that H # G.

Proof. All p-groups are nilpotent, and therefore G admits some nontrivial abelian quo-
tient G/£. Since G /¢ is a p-group, it admits a surjective group homomorphism G/ —
Z/pZ. In particular, H C Ker(G/{ — Z/pZ), and so H # G. O

3. SOLVABILITY

It is natural to ask when certain polynomial equations are solvable by radicals. To
answer this question, Galois theory provides the necessary bridge between group theory



and field theory. The polynomials which are solvable by radicals turn out to be exactly
those which correspond to certains groups of solvable type under this identification.

Definition 3.1. A group G is solvable if there exists a sequence of subgroups H;, ..., H; <
G such that

L Hj S’ Hj—l;

e the factor groups H;_,/H; are abelian, and

L] Hk = {6}
We obtain the following chain:

G=Hy>H > H,>--- > H = {e}.

Example 3.2. All abelian groups, dihedral groups Ds,, = Z,, X Z,, p-groups, and nilpotent
groups are solvable.

Non-Example 3.3. Simple, nonabelian groups (like A,) and symmetric groups S, (for
n > 5) are not solvable.

We can define a slightly relaxed version of this series, which exists for all finite groups.
Definition 3.4. A composition series of G is a finite chain of subgroups G,,...,G, < G
such that

e G; 4G,
e the factor groups G;_, /G, are simple, and
o G, = {e}.
We obtain the following chain:
G=G>G >GED>--->G, ={e}.
Definition 3.5. The length of a composition series is the number of subgroups in the
chain not including the identity.

Theorem 3.6. (Jordan-Holder Decomposition Theorem) Every finite group G has a composition
series, and any two composition series of G has the same length.

The solvable groups are precisely those finite groups whose simple factor groups in
its composition series are abelian, and so necessarily prime-order cyclic. We proceed to
a few nice properties of solvable groups:

Lemma 3.7. Let G be a solvable group. Then,

e For H < (G, H is solvable,

e For N < G, G/N is solvable,

e For G, H solvable, G x H is solvable,

e For any surjective group homomorphism ¢ : G — H, H is solvable.

We even obtain the following converse:
Lemma 3.8. For N < G, G is solvable if and only if N and G /N are solvable.
Theorem 3.9. (Feit-Thompson Theorem) Every group of odd order is solvable.
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3.1. Exercises.
Exercise 3.10. Let G be a group of order 4 - 3". Show that G is solvable.

Proof. From the Sylow theorems, G has either 1 or 4 Sylow 3-subgroups. If it has only
one, call it H, we are done, since p-groups are solvable and |H| = 3", |G/H| = 2°.
Suppose G has 4 Sylow 3-subgroups. The conjugation action of G on the set of Sylow
3-subgroups defines a homomorphism ¢ : G — S5,. In particular, |G /ker(y)| divides
24 = 23.3 and 4 - 3", so it is either 2,3,4,2 -3 or 3 - 4. If it is 4 or 3 - 4, then ker(yp) is
a p-group and therefore solvable. If it is 2 - 3, then ker(y) contains an index-2 p-group,
and is therefore solvable. It cannot be 2 or 3, else this contradicts that there are 4 distinct
Sylow 3-subgroups. In all cases, ker(y) is solvable, and im(y) is solvable since Sy is
solvable. It follows that G is solvable. O

Exercise 3.11. Let k be a positive integer. The group GLy(Z/2"Z) consists of matrices with
entries in the ring Z/27Z whose determinant in a unit of Z/2*Z. Show that GLy(Z/2"Z)
is a solvable group. You may use without proof that GLy(Z/27Z) = S5 is solvable.

Proof. We proceed by induction on £ > 1. When £ = 1, we are done. When £ > 1, let
e : GLo(Z/27) — GLy(Z/2%7'Z) denote the entry-wise reduction modulo 2! group
homomorphism. As this map is surjective, it suffices to show ker(r) is solvable. The
matrices occupying ker(my) are those of the form

10 1t
2
(0 1) + (m n) ’

where in — jm € (Z/2¥Z)*. One can check that all matrices of this form commute in
GLy(7Z/2%7), hence ker(7;) is abelian and therefore solvable. O

4. FIELD EXTENSIONS

Recall the notion of a field extension E/F. We review a few classical facts before
proceeding to Galois theory.

Definition 4.1. Let £/ F be a field extension. An element a € E is called algebraic over F
whenever there exists a non-zero polynomial f(X) € F[X] such that f(«a) = 0.

We can always assume such a polynomial f is monic.

Definition 4.2. A field extension E/F is an algebraic extension if every element a € E is
algebraic over F.

Definition 4.3. The degree of a field extension E/F is the dimension of £ regarded as a
vector space over the field of scalars F. We denote the degree by [E : F].

We obtain the following simple “tower relation”.

Lemma 4.4. For a chain of field extensions E/K/F, [E : F| = [E : K| - [K : F|. In particular,
|E : F is finite if and only if both [E : K| and [K : F| are finite.
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Lemma 4.5. Let E/F and K/F be finite field extensions, and denote EK the smallest field
containing both E and K. Then [EK : F| < [E : F| - [K : F], with equality whenever [E : F]
and [K : F| are coprime.

Proof. setn:=[E : F|and m := [K : F|. Let a4, ..., a, be a F-basis for E, and /1, ..., 5,
be a F-basis fo K. Then {a;06; : 1 <i <n, 1 < j < m} is a F-spanning set for K.
Moreover, both [E : F| and [K : F| divide [EK : F| = [EK : E]-n = [EK : K|-m. When
ged(n,m) = 1, nm divides [EK : F|,ie. [EK : F| > [E : F| - [K : F], hence equality
follows. O

Lemma 4.6. Let E/F be a field extension. Then for any a € E, deg(m,(X)) < [E : F] where
me € F[X] is the minimal polynomial of c.

Proof. Say n = [E : F], and consider the list 1,a,...,a". These elements must be lin-
early dependent by L a vector space of dimension n over K, which guarantees some
bo,...,b,_1 € F such that a" + b,_1a" ' + --- 4+ bja + by = 0. Since « is a solution of
h(X)=X"+b, X" '+ + 0, X + by € F[X], ma|h(X) and so deg(m, (X)) < n. O

In particular, if « is the root of some irreducible polynomial f(X) € Q[X], then [Q(«) :
Q] = deg(f)-

Example 4.7. Consider Q(¥/2)/Q and Q(wv/2)/Q, for w = €*™/* = —L1 4 ¥3; Then
Q({2,0) = Q(¥2) - Qw/2), and
Q(V2,w): Q) = [Q(V2,w) : Q(V2)] - [Q(V2) : Q] =23
because w is a solution of X? + X + 1. We notice that
Q(V2,w): Q) < [QWwV2) : Q- [Q(V2) : Q.

Lemma 4.8. Let E/F be a field extension of the form F(«)/F, where the minimal polynomial
ma(X) of a has odd degree. Then F(a) = F(a?).

Proof. Let deg(m,(X)) = 2k + 1, and notice that [F(«) : F(a?)] < 2. The lemma follows
by the observation

[F(a): F(a®)] - [F(a?) : F] = [F(a): F] =2k +1,
which forces [F(a) : F(a?)] = 1. O
Lemma 4.9. For E/F an algebraic extension, and F' C R C E a subring of E, R is a field.

Definition 4.10. If £ is an extension of I’ and f € F[X], we say f splits over E if f(x) =
A ngigk(X - ai) for \ € F, o; € E.

Definition 4.11. If F' < K and f € F[X], we say that K is a splitting field for f over F' if
[ splits over K but any proper subfield of K containing F.

Definition 4.12. An irreducible f € F[X] is separable if f has no repeated roots in a

splitting field; an arbitrary f € F[X] is separable if its irreducible factors are separable.
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Example 4.13. Every polynomial over a field of characteristic zero is separable.

Non-Example 4.14. Let f(X) = X? — a” € F,[a?]. Then f is not separable because
f(X) = (X —a)’ € F)la] > F,[a?], where [, [a] is a splitting field for F,[o?].

Fact 4.15. For F < K < E, E/F is separable if and only if E/K and K/F are separable.

Definition 4.16. An algebraic extension E/F' is normal if every irreducible over F' that
has at least one root in £ splits entirely over .

When encountered in the wild, separable field extensions may not be so easy to detect.
The following fact provides a more practical characterization.

Fact 4.17. E/F is normal if and only if E is a splitting field for some polynomial f € F[X].
Fact 4.18. For F < K < E, E/F normal implies E /K normal.
Lemma 4.19. All index-2 subgroups are normal.

Definition 4.20. A finite extension E/F' is Galois if it is (1) normal, and (2) separable,
where [E : F| = #{automorphisms of £ that fix F'}.

Up to isomorphism, there is exactly one finite field consisting of p” elements, and we
denote it GF(p™). All finite fields are of this type. It is a splitting field for the separable
polynomial X?" — X over F,, hence GF(p")/GF(p) is a Galois extension. The generator
of GL(p") \ {0}, the multiplicative group of order p" — 1, is called a primitive element.

Example 4.21. The element 2 is primitive for GF(3) and GF(5), but not for GF(7) since
23~ 1 (mod 7), i.e. it does not generate all six elements.

Definition 4.22. The minimal polynomial of a generator of GF(p") with coefficients in
GF(p) = F, is called the primitive polynomial.

Non-Example 4.23. The polynomial X* + X?® + X? + X + 1 € F,[X] is not primitive for
GF(2%) because it divides X® — 1, that is, its roots have order 5 and will not generate all
15 field elements.

Theorem 4.24. (Primitive Element Theorem) Every finite, separable field extension is simple, i.e.
generated by a single element.

Example 4.25. One can check that Q(v/2,v/3) = Q(v/2 + v/3).
The Galois group of this finite field extension has particularly simple structure.

Proposition 4.26. The Galois group Gal(GF(p™)/GF(p)) is cyclic of order n and generated by
the Frobenius endomorphism o : o — .

The theory of finite fields furnishes an additional interesting result.

Lemma 4.27. All algebraically closed fields are infinite.
11



Proof. Let K be an algebraically closed field. If K has characteristic zero, then Q C K,
hence K is infinite. Otherwise, GF(p) C K for some prime p. Since K is algebraically
closed, X P"*! _ X factors into linear terms for all n € N , and so K must be infinite. [

For the sake of convenience, we will denote F, := GF(p). We now consider a special
case of groups involving finite fields, namely GL,(F,), and elucidate a bit of its structure.

Fact 4.28. The order of the group GL,,(F,) is given by |GL,,(F,)| = (p"—1)(p"—p) - - - (p"—p" ).
Proof. Count the number of linearly independent column vectors. O
Fact 4.29. The order of the group SL,,(F,) is given by |SL,(F,)| = %.

When n = 2, this yields |GLy(F,)| = (p* — 1)(p* — p) = p(p + 1)(p — 1)%. Let’s consider
only GLy(F,) for the moment, for which we highlight a few important subgroups.

U:{(g i) ta,b,ceFy, acEIF;},
10
Vo {( ) ver)
a 0 «
T:{(O b):a,bEIFp,abEIFp}.

Lemma 4.31. For the subgroups as above, N < U, U = TN, and TN N = (
U=NxXT.

Definition 4.30.

1 0
0 1) . Hence

4.1. Exercises.

Exercise 4.32. (August 2022 Problem 3) Let L/F be a field extension and let K; and K,
be two distinct subfields with F' C K;, Ks C L such that L = K 1K, and [K; : F] = [K> :
F] = 3. Show that [L : F] is either 6 or 9, and give examples to show that both values
can occur.

Proof. Let ay, o, a3 be a F basis for K;. Then [K K, : K5 < 3. By K and K, distinct, we
know [K K5 : K] > 1, hence [L: F| = [L: K] - [Ks: ]—2 3or3-3.

For example, we notice [Q(+/2,w) : Q] 6, for w the third root of unity, where
[Qwv?2) : Q = [Q(V2) : Q = 3 and Q(w ,\3/_) Q(wv/2) - Q(¥/2). On the other
hand, consider [Q(v/2,vV/3) : Q] = 9, where [Q(v/2) : Q] = [Q(+/3) : Q] = 3, and
Q(2,93) = Q(V2) - Q(3).

U

Exercise 4.33. (August 2021 Problem 4) Fix a prime number p. Describe a p-Sylow sub-
group in each of the following groups:

(1) GL:(Z/pZ) \



(2) GLo(Z/pZ)
Proof. (1) Recall that |GLy(Z/pZ)| = (p*—1)(p*—p) = p(p*>—1)(p—1). Any p-Sylow sub-
group therefore has order p, and one example includes N = { ((1) 117) NS IE‘p},
[N| = p.
(2) The key object here is the short exact sequence
1 — Ker(r) — GLy(Z/p*Z) = GLy(Z/pZ) — 1,

where r is given by reduction modulo p. Since GL1(Z/pZ) maps into GLy(Z/p*Z)
via 1 — p, the SES is right split. Note that Ker(r) contains matrices of the form

1+ap bp
cp 1+4+dp

for a,b,c,d € {0,1,...,p — 1}, hence |[Ker(r)| = p*. It follows that |GLy(Z/p?Z)| =
p* - |GLy(Z/pZ)| = pP4(p* — 1)(p* — p) = p°(p* — 1)(p — 1), so we might take this
p-Sylow subgroup.

O

Exercise 4.34. (January 2021 Problem 3) Let K be a nontrivial extension field of C. Show
that K does not have a countable basis as a C-vector space.

Proof. Fix t € K\ C. Since C is algebraically closed, ¢ generates the purely transcendental
extension C(t). We notice, then, that elements of the form .-, for a € R, generate an
uncountably infinite family. We aim to show they are linearly independent. Suppose for

some nonzero ar,...,a, € C, " a; - # = 0. This would imply that
n
Zai-H(t—aj) =0,
i=1 j#i
contradicting ¢ transcendental over C. 0

Exercise 4.35. (August 2021 Problem 5) Let L/K be an algebraic extension of fields of
characteristic zero. Assume that for every o € L, the extension K(«)/K has degree at
most 2. Show that [L : K| < 2.

Proof. If [L : K] > 2, then we can find elements o ¢ K and § ¢ K(«) such that
[K(a,8) : K| > 2. By the primitive element theorem, for K(a,)/K a finite, separa-
ble field extension, there exists v € K (o, ) C L such that K(y) = K(«, ), contradicting
that [K(«): K] <2foralla € L. O

Exercise 4.36. (January 2022 Problem 2) Let K/F be a field extension of degree n. Show
that there is a subgroup of GL,,(F') which is isomorphic to K*.

Proof. Fix a basis ey, ..., e, for K over F. For each o € K, multiplication by « is an F-
linear map from K to K, which can be represented as the matrix « - Id,, in the basis

e1,...,e,. Since o, f € K* satisty (a- I,) - (8- 1,,) = af - I,,, and since (« - I,)(k) = k for
13



al k € K if and only if « is the identity in K*, it follows that K* is isomorphic to the
subgroup consisting of matrices of the form « - I,, for o € K*. O

5. Garois THEORY

Galois theory finds its genesis and motivation in algebraic number theory, in particular
the study of polynomial roots. It distills field theoretic problems such as solvability by
radicals down to group theory, rendering them amenable classical machinery.

Theorem 5.1. (Galois” Theorem) A field extension E/Q contains only elements expressible by
radicals if and only if Gal(E/Q) is solvable.

Corollary 5.2. A polynomial f(X) is solvable by radicals if and only if it has a solvable Galois
group.

Broadly, the Galois group encodes how the roots of a polynomial may be permuted
without detection by the polynomial. Concretely, the Galois group Galg(f) of a polyno-

mial f with n roots is a subgroup of 5,,.
We recall a few equivalent conditions of E/F Galois:

Theorem 5.3. A finite extension E/F is a Galois field extension if one of the following hold:

e E/F is a normal and separable extension,

o [ is the splitting field of a separable polynomial with coefficients in F,

o |Aut(E/F)| =[E: F],

e Every irreducible polynomial in F[X| with at least one root in E splits over E and is
separable,

o |[Aut(E/F)| > [E : F].

Question 5.4. For which f containing n roots is Galg(f) = S,,?
We present a family of Galois groups which coincide with the symmetric group.

Theorem 5.5. Let p be a prime, and G < S, such that G acts transitively on {1,...,p}, and G
contains a transposition (ij). Then G = S,,.

Proof. By the orbit-stabilizer theorem, |G| = p - [Stab({1,...,p})|, hence G contains an
element o of order p by Cayley’s theorem. Without loss of generality, o = (12---p), and
let the transposition be (12). Then any transposition (ij) may be written as follows:

(i) = (12)0)7 (o7 (12)) 10" .
0

Corollary 5.6. Let p be a prime. If f € Q[X] is irreducible, deg(f) = p, and f has exactly p — 2
real roots, then if E is its splitting field, Gal(E/F) = S,.

I

Example 5.7. For p a prime and ¢ the pth root of unity, Gal(Q(§)/Q) = (Z/pZ)*

Z/(p—1)Z.
14



Theorem 5.8. (Fundamental Theorem of Galois Theory) Let E/F' be a finite Galois extension.
There is an inclusion-reversing bijection between subgroups H < G := Gal(E/F') and interme-
diate fields F' < K < E. For K corresponding to H:

(1) E/K is always normal (hence Galois)
(2) K/F is normal iff H 1 G
(3) [K:F)=[G: H],and [E : K] = |H|.

5.1. Exercises.

Exercise 5.9. (January 2024 Problem 5) Prove that Q < 2+ \/§> is a Galois field exten-
sion of Q, and compute its Galois group.

Proof. First, observe that Q (\/ 2+ \/§> is the splitting field of the separable polynomial
f(X)=(X?—-2)2—-2=X*—4X?+2 over Q. The polynomial f has roots +«, +3 where
a=vV2+V2, B =vV2-+v2, and a8 = V2 hence 3 = % € Q( 2+\/§> as well.
So |Gal (Q (\/ 2+ \/§> / Q) | = 4, and we claim it is Z/47Z. It suffices to demonstrate an

element o € Gal (@ (\/ 2+ \/5) / Q> of order 4. Consider the automorphism o given by

a+— 3, then § — % In particular, 0?(a) = o(8) = _\/75 = —a # . ]

Exercise 5.10. (August 2024 Problem 4) Let FF = Q(v/2,V/3) and E = F(a) for a =

\/(\/5 +2)(v/3 + 3). You may use without proof that [F : Q] = 4.

(1) Prove that [E : F| =2, and that £/Q is a degree-8 extension.
(2) Prove that £ is Galois over Q and Gal(E/Q) has two non-commuting elements of
order 4.

Proof. (1) The element « solves the polynomial X? — (v/2 + 2)(v/3 + 3) € F[X], hence
[E: F] <2.Since o ¢ F, [E: F| = 2. Therefore, [E : Q] =[E : F]-[F : Q] =8 by
the tower law.

(2) We note that the roots of m,, as written above are given by

r1=\/(\/§+2)(\/§+3) —rlz—\/(\/?+2)(\/§+3)
r2=\/(—\/§+2)(\/§+3) —r2=—\/(—\/§+2)(\/§+3)
= J(VI+2(VE+3) —r= (VI +2) (V3 +3)
=/ (-VZ+2)(—V34+3) —ri—/(—vV2+2)(—V3+3)

Now consider the automorphism o : r; — —ry and 7 : r; — —r3. Then notice

U4IT1'—>—T2|—>—T1HT2'—>T1,

and

R Sl S S N N X ST
15



Moreover, c o7 : 1y +— —r3 +— —r3, While T oo : 1y = —ry > —19.
O

Exercise 5.11. (August 2021 Problem 1) Let K be a subfield of C such that K is a Galois
extension of Q with [K : Q] odd. Show that K C R.

Proof. The key observation is that for complex conjugation o, the order of o < 2 but must
divide Gal(K/Q) = [K : Q], hence it is 1 and so 0 =1d, i.e. ¢ acts trivially on K. O

Exercise 5.12. (August 2020 Problem 5) Let p be a prime number and let K be a field of
characteristic p. Let a,b € K, a # 0, and let L be the splitting field of X? — aX — b over
K. Show that L/K is Galois and that its Galois group is solvable.

Proof. Notice first that f'(X) = a # 0, hence f is separable and so L/K is Galois. Let
u and w be distinct roots of f. Then f(u) — f(w) = (v — w)? — a(u —w) = (u — w) -
((u —w)P~' —a) = 0 implies ¢ := u — w is such that §*~' = a. This means that w + md for
m=0,1,2...,p— 1 comprise all roots of f, since m” = m.

We aim to decompose Gal(L/K) into abelian pieces, by which it will become solvable.
Consider the following short exact sequence:

e —— Gal(L/K(§)) — Gal(L/K) — Gal(K(8)/K) — ¢

We note that K'(0)/K is the splitting field of the polynomial X?~! — a € K[X], whose
roots are precisely 0,24, ..., (p —1)d, hence K(§)/K is normal. Both L/K(6) and K (9)/K
are Galois by the Galois correspondence, as K < K(J) < L. Since K contains F and
therefore all (p — 1)st roots of unity, Gal(K(d)/K) < Z/(p — 1)Z, hence it is abelian.
Similarly Gal(L/K (§)) consists of all automorphisms of L fixing J, so any o : w + md —
w+ (m+¢) for all m = 0,1,2...,p — 1. Therefore, Gal(L/K(9)) is a subgroup of Z/pZ
and hence also abelian. Since Gal(K(0)/K) = Gal(L/K)/Gal(L/K(d)) and Gal(L/K (9)
are both abelian, i.e. solvable, Gal(L/K) is solvable.

O

Exercise 5.13. (January 2021 Problem 4) Let p and ¢ be distinct primes and let K/Q be a
Galois field extension of degree p®q® with a,b > 1. Show that there are linearly disjoint
proper subfields £ and F' of K such that K is the compositum EF.

Proof. We know that |Gal(K/Q)| = [K : Q] = p?¢’, which means we are guaranteed p-
and ¢-Sylow subgroups. Let H be a p-Sylow and G be a ¢-Sylow. Then H NG = {e} since
their orders are distinct prime powers. By the fundamental theorem of Galois theory,
H and G correspond to proper subfields £ and F' of K, respectively. It happens that
K = EF because H N G is trivial. O

Exercise 5.14. (January 2021 Problem 5) Let n be a positive integer, let K’ = Q(x1, x2, ..., xy),
and let F' C K be the subfield of functions that are symmetric in x;, zo, ..., x,. Set

2 2 2 2
P =T|To + T3T3 + -+ + Ty 1Ty + T, 71
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2 2 2 2
q = 2125 + X223 + -+ + Tp1T;, + T, 7T

Show that ¢ belongs to F'(p), the subfield of K generated by p.

Proof. First, we note that F' is the fixed field of the action of S,, on K. Observe that p is
fixed by ((12---n)) < S,, and ¢, too. The stabilizer of F(p) in S, is exactly ((12---n))
by the fundamental theorem of Galois theory, and the fact that F'(p) is the smallest field
containing F' and p. Since ((12---)) is contained in the stabilizer of ¢, it must happen
that F'(¢) C F(p), i.e. ¢ belongs to F(p). O

Exercise 5.15. (May 2021 Problem 3) Let n be a positive integer. Show that C(t)/R(¢") is
a Galois extension, and determine its Galois group. Here ¢ is an indeterminate and C(t)
is the rational function field.

Proof. Denote ¢ the nth root of unity. We claim that o : ¢ — £t and complex conjugation
¢ : z — z generate Gal(C(t)/R(t")). These generate a group isomorphic to the dihedral
group D, since 0" = ¢* = oco~'c = e. Notice that o and ¢ are automorphisms of C(¢)
which fix R(t"), and [C(t) : R(t")] = [C(t) : R(?)] - [R(¢) : R(t")] = 2n, so (o, c) generates
all symmetries and is Galois by the fifth characterization in Theorem 5.3. O

Exercise 5.16. (January 2022 Problem 4) Let K/Q be a Galois extension with degree 9
and at least 2 distinct subfields Q C L, Ly C K. What is Gal(K/Q)?

Proof. The only two groups of order 9 are Z/9Z and Z/37Z & 7Z./3Z. Since Z/9Z contains
only one nontrivial proper subgroup, Gal(K/Q) = Z/3Z & Z/3Z by the Galois correspon-
dence. O
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